A Method of Protein Model Classification and Retrieval Using Bag-of-Visual-Features

نویسندگان

  • Jinlin Ma
  • Ziping Ma
  • Baosheng Kang
  • Ke Lv
چکیده

In this paper we propose a novel visual method for protein model classification and retrieval. Different from the conventional methods, the key idea of the proposed method is to extract image features of proteins and measure the visual similarity between proteins. Firstly, the multiview images are captured by vertices and planes of a given octahedron surrounding the protein. Secondly, the local features are extracted from each image of the different views by the SURF algorithm and are vector quantized into visual words using a visual codebook. Finally, KLD is employed to calculate the similarity distance between two feature vectors. Experimental results show that the proposed method has encouraging performances for protein retrieval and categorization as shown in the comparison with other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Evaluating Classification Strategies in Bag of SIFT Feature Method for Animal Recognition

These days automatic image annotation is an important topic and several efforts are made to solve the semantic gap problem which is still an open issue. Also, Content Based Image Retrieval (CBIR) cannot solve this problem. One of the efficient and effective models for solving the semantic gap and visual recognition and retrieval is Bag of Feature (BoF) model which can quantize local visual feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014